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Abstract

A differential method is proposed which uses local heating rates to evaluate non-isothermal kinetic
parameters. The method allows to study the influence of the deviation of the true heating rate with
respect to the programmed one on the values of the kinetic parameters. For application, the kinetic
parameters of the following solid-gas decomposition reaction were evaluated: [Ni(NH3)6]Br2(s)→
[Ni(NH3)2]Br2(s)+4NH3(g). The results obtained revealed significant differences between the values
of the non-isothermal kinetic parameters obtained by using local heating rates and those obtained
by using the programmed heating rate. It was also demonstrated that the kinetic equation which
makes use of the local heating rates permits a better description of the experimental (α, t) data than
the kinetic equation which uses the programmed constant heating rate.

Keywords: differential method, evaluation of kinetic parameters, local heating rate, non-isother-
mal kinetics

Introduction

In conventional investigations of non-isothermal kinetics with a linear heating rate,
the change in the programmed temperature (T) with time (t) is given by [1, 2]

T = To + βt (1)

where To is the initial temperature and β is the programmed constant heating rate.
Due to the thermal effects which occur in the investigated sample, its temperature dif-
fers from the programmed one, as expressed by a modified form of Eq. (1) [3–5]:

T = To + βt + s(t) (2)
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where the supplementary term, s(t), accounts for the deviation from linearity of the
programmed temperature. The analytical form of the function s(t) is not known; it
may be approximated by a polynominal of 4th degree, selected so as to fit a certain
number of experimentally determined points (t, T). The experimental data allow the
expression of t as a function of T:

t=ϕ(T) (3)

where ϕ(T) is the appropriate function determined by interpolation.
By taking the derivatives of Eqs (2) and (3) with respect to t, the true heating

rate, β*, [3–5] in the investigated sample can be expressed either as a function of time:

dT/dt≡β*(t)=β+s′(t) (4)

or as a function of temperature:

dT/dt≡β*(T)=1/ϕ′(T) (5)

In order to derive the non-isothermal kinetic equations based on relationships
(1) and (2), we shall start from the general rate equation [1, 2]:

dα/dt=Af(α)exp[–E/RT] (6)

which describes the dependence of the reaction rate, dα/dt, on the temperature and
the degree of conversion (α). In the above equation, A is the pre-exponential factor, E
is the activation energy, and f(α) is the differential conversion function, which char-
acterizes the reaction mechanism.

On inserting Eq. (2) into Eq. (6), we obtain

dα/dt=Af(α)exp[–E/R(T0+bt+s(t))] (7)

By replacing the variable t by the variable T, and taking into account Eq. (4), we can
rewrite Eq. (7)

dα/dT=(A/β∗ )f(α)exp[–E/RT] (8)

Through variable separation and integration, Eq. (8) leads to the well-known integral
equation

g(α)≡ dα α
α

/ ( )f
0
∫ =A 1/ exp[– / ]d*β E RT T

0

Τ

∫ (9)

where g(α) is the integral conversion function.
Relationships (7), (8) and (9) represent, in fact, the ‘corrected’ non-isothermal

kinetic equations, as they take into account the deviation of the true heating rate from
the programmed one. It is easy to see that, for s(t)=0, which represents the ‘ideal’
case, β* is equal to β over the whole experiment and we obtain the equations of
non-isothermal kinetics widely used to evaluate non-isothermal kinetic parameters
[3–5].
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The complication due to the variable heating rate, β*(T), raised by the integral
equation (9), can be overcome by integrating it over small ranges of variables. In such
a way, we obtain [3–6]

d ( )=( ) dik

T

T

i

k

i

k

α α β
α

α

/ / exp[ / ]f A E RT T−∫∫ (10)

where βik is the local heating rate in the range α∈ [α i, αk]↔[α i, αk]. An iterative
method to evaluate non-isothermal kinetic parameters, based on Eq. (10), has been
proposed previously [4–6].

In the following, Eq. (8) will be used with the aim of deriving a new differential
method of evaluating kinetic parameters from non-isothermal experiments.

Presentation of the method

The ‘classical’ differential methods of evaluating non-isothermal kinetic parameters
are based on Eq. (8) for s(t)=0 [7–10]. Following the taking of logarithms and rear-
rangement, this equation becomes

ln[β(dα/dT)/f(α)]=lnA–E/RT (11)

Thus, for a suitable form of f(α), the plot of ln[β(dα/dT)/f(α)] vs. 1/T gives a straight
line whose slope and intercept allow estimation of the values of the activation energy
and pre-exponential factor, respectively [7–10]. The most probable mechanism func-
tion, f(α), is identified as that which ensures the best linearity of this plot, i.e. it corre-
sponds to the maximum value of the correlation coefficient, r.

It should be emphasized that the graphical procedure presented above furnishes
results similar to those obtained by applying the linear least squares method [11–13].
In the present particular case of linear regression, the sum of squares to the residual
terms, Sres, should be written as [14–18]

S T f A E RTres i

i–1

N

i i= {ln[ (d /d )β α α∑ − +/ )] ln / }2 (12)

where N is the number of experimentally determined data points, [Ti, α i, (dα/dT)i].
The values of the kinetic parameters A and E may be found from the condition of the
minimum in Sres, which yields to a system of linear equations:

∂ ∂ ∂ ∂ =0S A S Eres res/ ln /= (13)

The differential method we propose also makes use of the logarithmic form of
Eq. (8), but s(t) is kept different from zero:

ln[β*(T)(dα/dT)/f(α)]=lnA–E/RT (14)

In order to simplify the mathematical expressions, let us introduce the notations

lnA=a (15)
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and

E/R=b (16)

Thus, for a given form of f(α), if we apply the linear least squares method, the sum of
squares of the residual terms becomes

S T T f a b Tres

*

i i

i–1

N

i i= {ln[ ( )(d /d )β α α∑ − +/ ( )] / }2 (17)

where N is the number of experimental data points involved in the linear regression.
The condition of the minimum in Sres leads to the system of linear equations

∂ ∂ ∂ ∂ =0S a S bres res/ /= (18)

The values of the parameters a and b are determined by solving the system (18),
and the kinetic parameters (A and E) can be evaluated by means of relationships (15)
and (16).

The graphical illustration of this method implies a plot of ln[β*(Ti)(dα/dT)i/f(α i)]
vs. 1/T, which gives a straight line for an appropriate choice of f(α). The slope and in-
tercept of the straight line obtained allow estimation of the values of A and E.

In order to identify the most probable mechanism function, f(α), we make use of
two statistical criteria: 1) the correlation coefficient, r, [11–13], and 2) the residual
mean squares (S xy

2 ), defined as [11–13]

S N Sxy

2

res=[1/( –2)] (19)

The most probable mechanism function should ensure at the same time the max-
imum value of the correlation coefficient and the minimum value of S xy

2 . Use of the
residual mean squares together with the correlation coefficient is highly recom-
mended for selection of the most probable mechanism function. Use of the correla-
tion coefficient of the linear regression analysis alone does not seem always well
grounded statistically, since the maximum value of the correlation coefficient may
differ insignificantly from its lower values [19, 20].

Application and discussion

For application, we have studied the non-isothermal kinetics of the solid-gas decom-
position reaction

[Ni(NH3)6Br2(s) → [Ni(NH3)2Br2(s)+4NH3(g) (I)

The decomposition curve was recorded with a programmed heating rate of 10 K min–1.
Detailed information concerning the experimental conditions are to be found in [4].

The kinetic parameters were evaluated by employing both the ‘classic’ differen-
tial method (the plot based on Eq. (11)) and the proposed one (the plot based on
Eq. (14)). In this way, the influence of the deviation of the true heating rate from the
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programmed one (the effect of function s(t)) on the values of the estimated kinetic pa-
rameters can be perceived [4].

It should be mentioned that the kinetic parameters of reaction (1) were previ-
ously evaluated by the integral method based on Eq. (9) [4]. Thus, we had the oppor-
tunity to make a comparison between the values of the kinetic parameters evaluated
by using different methods.

The primary experimental data consist of N=39 data points, (ti, Ti, α i), with the
degree of conversion ranging from 0.0950 to 0.9587. The rate of reaction (dα/dT)
was not determined instrumentally (by recording the DTG curve) since this curve
may be affected by considerable errors [10, 21]. The required values of dα/dT were
determined numerically, by using a curve-fitting method. In order to describe the
functional relationship between α and T, a 4th degree polynominal, denoted here as
p(T), was used, and the calculations were performed by means of the ‘PolynomialFit’
package of the Mathematica software system [22]. According to our notation, we
may write

dα/dT=p′(T) (20)

Figure 1 shows the variation in dα/dT with T, as determined by employing
Eq. (20).

The local heating rates can be determined similarly by using the same ‘Polyno-
mialFit’ package of Mathematica. As already mentioned, functions s(t) and ϕ(T) are
approximated by appropriate 4th degree polynomials, which can be inserted into
Eqs (4) and (5) in order to obtain β*(t) and β*(T), respectively. On the basis of the ac-
quired experimental data, the calculations performed with the ‘PolynomialFit’ pack-
age reveal the variation in the true heating rate with respect to time and temperature,
as illustrated in Figs 2 and 3.

As may be seen from these illustrations, the true heating rate displays a consider-
able deviation from the constant programmed heating rate of 10 K min–1.
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Fig. 1 Plot of dα/dT vs. T determined by using Eq. (22) for reacion (I)



The most common mechanism functions, f(α), used for applications are listed in
Table 1. For the Fn mechanism, not only the usual values of n, e.g. 1, 2 and 3, were
considered: non-integer values were also taken into considerations in order to search
for the most probable mechanism function.

The numerical calculations required by minimization of the sum of squares of
the residual terms (Sres) were performed by using the ‘Linear Regression’ package of
Mathematica [22]. Besides the values of a, b, r, Sres and S xy

2 , this package provides the
appropriate confidence intervals for a and b [11–13, 22]. For all applications, a cus-
tomary confidence level of 95% was considered.
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Fig. 3 Plot of β* vs. T for reaction (I)

Fig. 2 Plot of β* vs. t for reaction (I)



Table 1 Usual mechanisms from the literature and the corresponding forms of f(α)

No. Mechanism f(α) Observations

1 Pm Power law mα(m–1)/m m=1, 2, 3 and 4

2 E1 Exponential law α
3 An Avrami-Erofeev n(1–α)[–ln(1–α)](n–1)/n n=3/2, 2, 3, and 4

4 B1 Prout-Tompkins α(1–α)

5 R2 Contacting surface (1–α)1/2

6 R3 Contacting volume (1–α)2/3

7 Fn nth order reaction (1–α)n

8 D1 1-D diffusion 1/(2α)

9 D2 2-D diffusion [–ln(1–α)]–1

10 D3 3-D diffusion
(Jander equation)

1.5(1–α)2/3[1–(1–α)1/3]–1

11 D4 3-D diffusion
(Ginstling–Brounshtein equation)

1.5(1–α)1/3[1–(1–α)1/3]–1

The statistical discrimination between the various mechanism functions demon-
strated that the most probable mechanism function is Fn, with n=1.002, for the ‘clas-
sical’ method, and n=0.781 for the proposed method. Table 2 presents the results ob-
tained by linear regression.

The kinetic parameters were also evaluated by using the improved integral
method of Coats and Redfern (this method utilizes the programmed heating rate, β)
[23]. The obtained values of the kinetic parameters are

n=0.932 (Fn model); E=77.630±0.244 (kJ mol–1); lnA=14.279±0.062 (s–1).

A comparison of these values with those given in Table 2 reveals that the two
methods which use the constant programmed heating rate, β, yield closely similar
values of the kinetic parameters. On the other hand, as expected, the values calculated
by taking into account the deviation of the heating rate programme from a linear one,
i.e. by using the true heating rate β*, differ significantly from them.

In order to evaluate the results obtained, in the following we illustrate the way in
which these kinetic parameters describe the experimental data. Figure 4 depicts the
experimental (α, t) data points and the α vs. t curve generated by inserting the kinetic
parameters obtained by the classical differential method into Eq. (7), with s(t)=0. Fig-
ure 5 shows the same experimental data points and the α vs. t curve generated by in-
serting the kinetic parameters evaluated with the Coats-Redfern method into Eq. (7),
also with s(t)=0. The α vs. t curve generated by inserting the kinetic parameters ob-
tained by the new differential method into Eq. (7), with s(t)≠0, is given in Fig. 6. In a
similar way, Figs 7 and 8 exhibit the (α, T) experimental data points and the α vs. T
curves generated by inserting the kinetic parameters obtained with either the classical
differential method or the improved Coats-Redfern method into Eq. (8), with s(t)=0,
whereas Fig. 9 depicts the same experimental data points and the α vs. T curves gen-
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Table 2 Values of kinetic parameters and of statistical criteria evaluated by using the classical differential method and the new differential
method

Differential method Mechanism E/kJ mol–1 lnA/s–1 r Sxy

2

Classical; based on Eq. (8) Fn; n=1.002 82.329±0.580 15.527±0.148 0.99979 3.5375⋅10–4

New; based on Eq. (11) Fn; n=0.781 72.207±0.994 12.741±0.253 0.99920 1.0388⋅10–3



erated by inserting the kinetic parameters obtained with the new differential method
into Eq. (8), with s(t)≠0.

In every case, the α vs. t or α vs. T curves were generated by solving the correspond-
ing differential equations numerically. This difficult task can be carried out with the
‘NDSolve’ function of Mathematica [24, 25].

The closeness of the fit can be appreciated qualitatively by using the arithmetic
mean of the absolute values of the relative errors (Sabs), i.e.

S Nabs calc,i exp,i exp,i

i 1

N

=1/ |( – )/α α α |
=
∑ (21)
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Fig. 4 Experimental (α, t) data points (....) and the α vs. t curve generated by inserting
the kinetic parameters evaluated with the classical differential method into Eq. (7)

Fig. 5 Experimental (α, t) data points (....) and the α vs. t curve generated by inserting
the kinetic parameters evaluated with the Coats–Redfern method into Eq. (7)



In this expression, αexp is the experimentally determined value of the degree of con-
version and αcalc is the value of α determined numerically with ‘NDSolve’. The
smaller the value of Sabs, the better the calculated curve fits the experimental data. The
values of Sabs obtained are given in Figs 4–9.

From these figures, various conclusions may be drawn.
i) The classical non-isothermal equations, i.e. Eqs (7) and (8), with s(t)=0, can-

not adequately describe the experimental (α, t) data, but provide an accurate descrip-
tion of the experimental (α, T) data. This is due to the fact that in the classical view
we are interested mostly in expressing the functional dependence α vs. T by taking no
account of the real time-temperature dependence, i.e. Eq. (2).
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Fig. 6 Experimental (α, t) data points (....) and the α vs. t curve generated by inserting
the kinetic parameters evaluated with the new differential method into Eq. (10)

Fig. 7 Experimental (α, T) data points (....) and the α vs. T curve generated by inserting
the kinetic parameters evaluated with the classical differential method into
Eq. (8)



ii) The corrected non-isothermal equations, i.e. Eqs (7) and (8) with s(t)≠0, pro-
vide an accurate description of both the experimental (α, t) and (α, T) data.

iii) If the very close values of Sabs are taken into account, the experimental (α, T)
data are seen to be described with almost the same accuracy by Eq. (8) for either
s(t)=0 or s(t)≠0.

Finally, the values of the kinetic parameters determined in the present work and
the values taken from ref. [4] are presented for comparison in Table 3.

The tabulated data reveal that the methods based on the true heating rate give
closely similar values of the kinetic parameters. The three methods that employ the
classical constant heating instead of the true heating rate also lead to close values of
the kinetic parameters, but they differ from those in the other group.
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Fig. 8 Experimental (α, T) data points (....) and the α vs. T curve generated by inserting
the kinetic parameters evaluated with the improved Coats–Redfern method into
Eq. (8)

Fig. 9 Experimental (α, T) data points (....) and the α vs. T curve generated by inserting
the kinetic parameters evaluated with the new differential method into Eq. (11)
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Table 3 Kinetic parameters obtained by various methods for reaction (I)

Method n E/kJ mol–1 A/s–1 Reference

Classical differential; based on Eq. (8) 1.002 82.329 5.535⋅106 present work

New differential; based on Eq. (11) 0.781 72.207 3.413⋅105 present work

Based on Eq. (12); using β 0.981 81.29 4.25⋅106 [4]

Based on Eq. (12); using β* 0.741 69.89 1.85⋅105 [4]

Improved Coats-Redfern 0.932 77.630 1.589⋅106 present work



Conclusions

1. A new differential method has been presented, which uses local heating rates
for the evaluation of non-isothermal kinetic parameters.

2. The results demonstrate that the true heating rate displays a noticeable devia-
tion from the constant value of the programmed heating rate.

3. The kinetic parameters were evaluated by linear regression analysis and, be-
sides the correlation coefficient (r), the residual mean squares (S xy

2 ) were regarded as
a supplementary statistical criterion to determine the most probable mechanism func-
tion.

4. Significant differences between the values of the kinetic parameters evaluated
by the new method and the values obtained by employing two methods which use
constant heating rates were observed for reaction (I).

5. Equation (7) cannot adequately describe the experimental (α , t) data for
s(t)=0, but provides an accurate description for s≠0.

6. Equation (8) can adequately describe the experimental (α, T) data for both
s(t)=0 and s≠0.

7. The values of the kinetic parameters for the solid-gas decomposition of
[Ni(NH3)6]Br2 are in good agreement with those obtained previously by the method
based on Eq. (10).
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